
Role of electrostatic interactions in the assembly of empty spherical viral capsids

Antonio Šiber1,2,* and Rudolf Podgornik1,3,†

1Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
2Institute of Physics, P.O. Box 304, 10001 Zagreb, Croatia

3Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
�Received 28 June 2007; revised manuscript received 5 September 2007; published 12 December 2007�

We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The
charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electro-
static repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of nonelec-
trostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive
electrostatic and attractive interactions between the protein subunits can result in the formation of spherical
viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend
on the angle between the neighboring protein subunits �i.e., on the mean curvature of the viral capsid� so that
a particular angle�s� is �are� preferred energywise. Our results for the electrostatic contributions to energetics of
viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein
contacts in the hepatitis B virus �P. Ceres A. Zlotnick, Biochemistry 41, 11525 �2002��.
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I. INTRODUCTION

Many types of viruses can spontaneously assemble from
the proteins that make the viral coating �capsid� and the viral
genetic material. This was first demonstrated in the work of
Fraenkel-Conrat and Williams �1� where they showed that
fully infectious tobacco mosaic viruses can be spontaneously
reconstituted from the individual proteins that make the viral
coating and the viral RNA molecules.

It may be argued that the precision of the viral assembly is
guided by an interplay between the properties of the RNA or
DNA �biopolyelectrolyte� and the capsid proteins, such as
the total biopolyelectrolyte length, the effective charge on the
proteins, and on the biopolyelectrolyte, and possibly some
specific interaction acting between the RNA or DNA and the
proteins. However, in some types of viruses, the genetic ma-
terial is not necessary for the capsid assembly and empty
viral capsids can be assembled in the absence of viral
biopolyelectrolyte �2–6�, at least when the amount of salt in
the solution is large enough �6�. It is rather intriguing that the
thus assembled capsids are often highly monodisperse �2,3�,
which suggests that there is some regulating factor, indepen-
dent of the viral RNA or DNA, that favors capsids of a
particular size. This is the effect that we investigate in this
paper and the motivation for our study.

In principle, viral proteins can assemble in a variety of
capsids with different shape and size �5,7,8�. We shall con-
centrate on the nearly spherical viral capsids whose structure
can be described within the so-called Caspar-Klug
quasiequivalent construction �9�. In more mathematical
terms, the viral capsids that we consider are icosadeltahedral,
i.e., they can be mapped onto triangulations of the sphere
with the icosahedral “backbone” �see, e.g., Refs. �7,10,11�
for more details�. The different triangulations can be de-

scribed using the notion of the so-called T number. The num-
ber of protein subunits �N� in a quasiequivalent viral capsid
is

N = 60T , �1�

where T=1,3 ,4 ,7 ,9 , . . ., i.e., T=h2+hk+k2 and h and k are
non-negative integers �11�.

In view of the potential polymorphism of the viral protein
assemblies, which is also observed experimentally, especially
in some viruses �6,12,13�, it is rather surprising that empty
capsids of most simple viruses precisely assemble in capsids
whose T number is the same as in fully functional capsids
that contain the viral RNA or DNA �2,3�. Even when several
differently sized empty capsids do form �4,5,13�, these rep-
resent only a tiny subset of all of the imaginable capsid for-
mations. Since the viral proteins have a certain charge in the
solution �14,15�, it is tempting to assume that the repulsive
electrostatic interactions compete with some other attractive
interactions between the viral proteins in such a way that the
total free energy of the capsid is minimal exactly for the
capsid of the observed radius. The attractive interactions be-
tween the viral proteins could be of different origins �e.g.,
van der Waals interactions, hydrophobic interactions, or
chemical bonding�. However, it has been experimentally
demonstrated that the binding energy of the two viral pro-
teins increases with temperature �3�, which strongly suggests
that the attractive protein interactions are dominated by ei-
ther the zero-frequency term of van der Waals interactions
�16� and/or by hydrophobic interactions �14�. They should
thus be rather local and proportional to the area “buried” in
the protein-protein contacts.

The competition between hydrophobic and electrostatic
interactions in viral capsids has been theoretically investi-
gated before �14,17,18�. The emphasis there, however, was
mostly on kinetics of viral assembly, i.e., on the classical
nucleation theory and the mass action law. Furthermore, the
electrostatic interactions were modeled as the asymptotic
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form of the Debye-Hückel �DH� approximation, in the re-
gime where R /�DH�1, where R is the capsid radius and �DH
the DH screening length that is proportional to the inverse
square root of the salt concentration. It is the aim of this
paper to reexamine in more detail the role of electrostatic
interactions in the capsid assembly, to investigate whether
they can act to regulate the capsid size �radius�, and whether
they can prevent the capsid formation. To this end, we shall
introduce a model of a viral capsid that is more realistic and
more complex than the ones used in previous studies. We
shall go beyond the DH approximation and consider all re-
gimes in R /�DH. We shall also estimate the contribution of
the electrostatic interactions to the total binding energy of the
capsid.

There are two different models of capsid electrostatics
that we consider. Section II describes the simpler of these
models that treats the capsid as a uniformly charged, infi-
nitely thin sphere whose charge density is fixed by the total
charge on the capsid protein in the solution. This, rather sim-
plified, model of capsid allows us to relate our results with
those previously published �14�. The aim of Sec. II is two-
fold. First, we shall clearly demonstrate that the previously
derived expressions for the capsid energetics �14� have lim-
ited validity, even in physiological conditions. The theory
and results presented in Sec. II also constitute a good prelude
for a more elaborate electrostatic model of a viral capsid
presented in Sec. III. There, the capsid is modeled as a di-
electric medium contained in between the two infinitely thin
spheres, each of which has a certain prescribed charge den-
sity. In Sec. IV we attempt to relate our theoretical predic-
tions to experimental results on the viral energetics �3�. Sec-
tion V discusses limitations of our models of viral capsids.

II. VIRAL CAPSID AS AN INFINITELY THIN,
UNIFORMLY CHARGED SPHERICAL SHELL: MODEL I

A. Free energy of empty capsids in salty solution

We first approximate the icosadeltahedral capsid as the
perfect sphere of radius R whose charge is uniformly distrib-
uted on the surface, so that the surface charge density is �.
The theory of elasticity applied to icosadeltahedral shells
predicts that the viral capsids are aspherical, the more so the
larger their mean radius �this is also in agreement with ex-
perimental data� �11,19�. The asphericity arises from the so-
called “buckling” of the capsid around the pentameric pro-
tein aggregates �11,19�. The experimental data on virus
shapes �20� suggests that the virus surface may, in fact, be
very corrugated, but it is difficult to assess the corrugation
and asphericity of the corresponding protein charge distribu-
tion. For our purposes we neglect the capsid asphericity
which is, on the basis of continuum theory of Lidmar et al.
�19�, expected to be small especially in viruses of small radii
�the validity of the theory may, however, be questionable for
small viruses; see Sec. V�. Under this approximation, the
charges on the capsid, together with the �monovalent� salt
ions in the solution whose bulk concentration is c0, give rise
to spherically symmetric electrostatic potential ��r�, so that
the problem is effectively one-dimensional.

The free energy of the system �proteins and salt ions in
the solution� in the mean-field �Poisson-Boltzmann� approxi-
mation can be expressed as a functional of the electrostatic
potential as �21�

F =� d3r�fel�r� + f ions�r�� + Fboundary , �2�

where

fel�r� = ec+� − ec−� −
�0�r

2
����2, �3�

and

f ions�r� = �
i=±
� 1

�
�ci�r�ln ci�r� − ci�r� − �c0

i ln c0
i − c0

i ��

− �i�ci�r� − c0
i �	 , �4�

where Fboundary is the boundary contributions arising from
the discontinuity of the potential at the capsid �see Eqs. �7�
and �8� below�. The free energy is the sum of the electro-
static energy of charge in the potential �fel�, and the salt ions
configurational or entropy contribution �f ions�. This ansatz is
correct as long as the counterions are of low valency and/or
the charge density on the capsid is not too large, leading to
the so-called weak-coupling regime, which is properly cap-
tured by the Poisson-Boltzmann theory �22�.

In the equations above, e is the electron charge, �r is the
relative permittivity of the solvent �water, �r=80�, �0 is the
vacuum permittivity, �= �kBT�−1, where T is the temperature
�T=300 K� and kB is the Boltzmann constant, c+�r� and c−�r�
are the concentrations of + and − ions in the solution, and �+

and �− are their respective chemical potentials. We shall con-
sider dilute capsid protein solutions and shall thus neglect the
influence of counterions on the potential. This also means
that the bulk concentrations of positive and negative ions are
equal, c0

+=c0
−=c0.

The variation of the functional Eq. �2� with respect to
fields � and ci yields the following equations:

c±�r� = c0 exp��e���r�� , �5�

and

�0�r�
2��r� = 2ec0 sinh��e��r�� . �6�

Equation �6� is the Poisson-Boltzmann equation for the po-
tential field. Its mean-field character is a consequence of ap-
proximating the salt ions as the ideal gas �Eq. �4��. One ad-
ditionally needs to specify the boundary condition of the �
field. For the assembly of viruslike particles, the prescribed
surface charge density ��� is the most realistic boundary con-
dition and regardless of the capsid size, i.e., the number of
protein subunits it contains, the surface charge density of
capsid should be the same. We shall also assume that the
charge on the particular protein does not depend on the salt
concentration �but see Ref. �15� for the dependence of pro-
tein charge on the pH value of solution� and will thus ex-
clude charge regulation boundary condition from our consid-
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erations �23�. Requiring that the surface charge density of the
bounding sphere is fixed, yields


 ���r�
�r



r=R−

− 
 ���r�
�r



r=R+

=
�

�0�r
. �7�

The derivative of the potential �or electric field� displays a
discontinuity at the bounding sphere �see Fig. 1�. This is of
course a consequence of the fact that there is a charge
�Q=4	�R2� on the sphere. The electrostatic energy of this
charge is equal to Fboundary =Q��R� and the total electro-
static free energy of the system is thus

F =� �fel�r� + f ions�r��d3r + Q��R� . �8�

Note that in the limit c0→0 �the Coulomb limit�, the func-
tional reduces to

F = −
�0�r

2
� ����2d3r + Q��R� =

Q��R�
2

, �9�

which is simply the self-energy of the �completely un-
screened� charge on the sphere.

B. Numerical solutions of the model and analytic
approximations in the Debye-Hückel limit

Equation �6� is a nonlinear differential equation which we
solve numerically. We first discretize the radial coordinate
both within the capsid and outside it, so that the total number
of points is typically around 600 �24�. The intervals in radial
coordinates are not the same in the two regions, and have to
be chosen so that the potential at the point with the largest
radial coordinate �outside the sphere� is very nearly close to
zero. At each of the points we consider the value of the
electrostatic potential. The sum of square deviation of the
potential from the values required by the differential equa-
tion �6� at the discrete set of radial coordinates is minimized
�25� until a desired numerical accuracy is achieved. A similar
numerical procedure has also been used in Ref. �21�.

Additional insight can be obtained in the regime when
e� �� � 
1. In that case �the DH approximation� the equation
can be linearized and analytically solved. The solution within
the capsid is

��r� =
Q sinh��DHr�

4	r�0�r�DHR�sinh��DHR� + cosh��DHR��
, �10�

and outside the capsid

��r� =
Q exp�− �DH�r − R��

4	r�0�r�DHR�1 + coth��DHR��
, �11�

where �DH=1 /�DH=��2e2c0� / ��0�rkBT� is the inverse DH
screening length. Comparison of the numerical and the DH
solution from the above two equations is shown in Fig. 1.
Note how the DH approximation fails when the potential at
the capsid acquires high values, as is the case in low-salt
solutions. The surface charge density chosen in the displayed
result ��=0.4 e /nm2� should be realistic for the assembly of
viruslike particles at neutral pH �14,15,17�.

The free energy of the assembled capsid in salty solution
can be calculated from Eq. �8� once the electrostatic potential
has been obtained. It is instructive to examine the Coulomb
case first. In this situation, the total free energy is simply the
electrostatic self-energy of the capsid,

FCoulomb =
Q��R�

2
=

2R3	�2

�0�r
. �12�

For a given surface charge density, the free energy should
scale with the third power of the capsid radius. If one
assumes that the attractive protein-protein interaction
�whatever its source may be� is local, one can write

Fadhesion = −
m�

2
N , �13�

where N is given by Eq. �1�, m is the mean number of con-
tacts that a particular protein makes with its neighbors

FIG. 1. �Color online� Numerically exact solution for the poten-
tial ��r� �symbols� and the DH solution �lines�. The �monovalent�
salt concentrations are 100 mM and 10 mM and the capsid radii are
R=11.07 nm and R=7.02 nm in �a� and �b�, respectively. The sur-
face density of capsid charge is �=0.4 e /nm2.
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�m�3�, and � is the negative free energy of the protein-
protein contact ��
0�. Thus, the contribution of Fadhesion to
the total capsid energy should scale as −R2, since the attrac-
tive interaction is simply proportional to the number of pro-
tein subunits. The combination of the unscreened electro-
static self-repulsion and the attractive adhesion interaction
should thus have a minimum at some radius. This observa-
tion could apparently explain the origin of the monodisper-
sity of capsid radii without the need to introduce, e.g., the
spontaneous curvature contribution to the total energy of the
capsid. However, as shall be shown below, these consider-
ations profoundly change when one considers the role of salt
in the capsid assembly.

The free energies of the capsids in the solutions with sev-
eral different monovalent salt concentrations are shown in
Fig. 2. It is obvious that even for quite low salt concentra-
tions �c0=1 mM� the Coulomb prediction is not valid. Fur-
thermore, even the functional dependence of the free energy
on the capsid radius is different from the prediction of Eq.
�12�. In the DH approximation, the free energy of the system
can be shown to be given by

FDH =
Q��R�

2
, �14�

somewhat deceivingly looking like the expression in Eq. �12�
since the potential at the capsid ��R� is to be obtained as the
solution of the linearized Poisson-Boltzmann equation, i.e., it
is profoundly influenced by salt ions. Using Eq. �10�, one
obtains that

FDH =
2	�2R2

�DH�0�r�1 + coth��DHR��
. �15�

When �DHR�1, the equation reduces to

lim
�DHR�1

FDH =
	�2R2

�DH�0�r
, �16�

which shows that for �DHR�1 the free energy scales with
the second power of the capsid radius in clear contrast with
the prediction obtained in the Coulomb regime, Eq. �12�.
Exactly the same relation was obtained in Ref. �14� �see their
Eq. �4�� by using a different approach, but note that its re-
gime of validity is limited by the fact that �i� it was derived
by linearizing the Poisson-Boltzmann equation, and that �ii�
it holds only when �DHR�1. Thus, for very low salt concen-
trations, the validity of Eq. �16� is severely limited, but even
for moderate salt concentration of c0=10 mM �with � cho-
sen as before�, the DH approximation overestimates the free
energies at R�10 nm by about 50%. For larger surface den-
sities, the DH approximation is worse, and for sufficiently
large capsid charge density it becomes erroneous even in the
physiological salt regime �c0�100 mM�. This is illustrated
in Fig. 3, which displays the free energies of the assembled
capsids at c0=100 mM for several different values of the
effective capsid charge density ��=0.4,0.8,1.2,1.6 e /nm2�.

Interestingly enough, in the opposite regime of capsid
sizes, i.e., when �DHR
1, the DH expression for the system
free energy reduces to

lim
�DHR
1

FDH =
2R3	�2

�0�r�1 + �DHR�
, �17�

which clearly tends toward the �unscreened� Coulomb ex-
pression for the free energy when �DHR→0. It should be
noted here that there is in fact an upper limit on �DH set by
the concentration of counterions that the proteins release in
the solution, so that the limit �DH→� �or �DH→0� should
be considered with caution.

The numerically exact solutions also display the scaling
laws predicted by the DH approximation, i.e., the free energy
scales as R3 for �DHR
1 and as R2 for �DHR�1 �see par-
ticularly the c0=1 mM case in Fig. 2�. One important differ-
ence though, is an onset of R2 scaling behavior for smaller
values of R than predicted by the DH calculation, especially
when the salt concentration is low. The same scaling behav-
iors have been obtained in a DH approximation for a more
complicated model of a spherical viral capsid whose charge
distribution is nonuniform and carries a signature of its
icosahedral symmetry �26�.

FIG. 2. �Color online� Free energies of the system �capsid +
salt� as a function of the capsid radius for several different salt
concentrations as indicated in the body of the figure. The capsid
surface charge density is �=0.4 e /nm2. The symbols denote the
numerically obtained �exact� results, while the dashed lines are the
DH approximations to the free energy �the length of dashes in-
creases with the salt concentration�. The full line denotes the free
energy in the Coulomb regime, Eq. �12�. The points denoted by A
and B correspond to potential profiles that are shown in panels �a�
and �b� of Fig. 1, respectively.
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III. VIRAL CAPSID AS A DIELECTRIC MEDIUM
CONTAINED IN BETWEEN THE TWO UNIFORMLY

CHARGED INFINITELY THIN SPHERICAL
SHELLS: MODEL II

In the electrostatic model from the previous section we
have assumed that the capsid is infinitely thin and uniformly
charged. The proteins of viral capsids carry a distribution of
charge, both of positive and negative sign �27�, the negative
charges being typically localized on the outside and the posi-
tive charges on the inside of the capsid �this trend is signifi-
cantly more pronounced in DNA viruses �27��. The presented
model could thus be viewed as a smeared lowest order
�monopole� in multipole expansion of the fields generated by
the protein charge distribution. In order to investigate
whether the R2 behavior of the electrostatic free energy of
the capsid is a consequence of the simplicity of model I, in
this section we adopt a more complex model of the capsid, as

illustrated in Fig. 4. The capsid is approximated by the shell
of finite thickness, �, whose dielectric permittivity is �p. The
shell is permeable to water and salt ions from the outside, but
no ions are allowed in the capsid material. The inner and
outer surfaces of the shell carry the surface charge densities
of �1 and �2, respectively. The thickness of the dielectric
layer � in our model should not be identified with the capsid
thickness, although they are clearly related. The typical
capsid thicknesses are of the order of 2 nm �20�, and this
should be the upper bound for the �.

It is again instructive to obtain some analytical limits for
the energetics of viral capsids and to this end we solve the
problem in the Debye-Hückel approximation. The analytic
results for the electrostatic potential are somewhat cumber-
some and are thus summarized in the Appendix. The capsid
free energy is in the DH approximation given by

FDH =
Q�

2
= 2	��1R2��R� + �2�R + ��2��R + ��� .

�18�

The number of parameters in this model is large, but since
we are interested in the assembly of viral capsids, we seek
for the expression for the free energy in the limit when
�DHR�1, �
R, and �r
�p ��p is of the order of 5 for un-
charged portions of the protein assemblies, depending also
on the type of protein �28,29��. In this regime, the free en-
ergy simplifies to

lim
vir

FDH = 2	
�p��1 + �2�2 + �r��1

2 + �2
2��DH�

�0�r�DH�2�p + �r�DH��
R2. �19�

Note that when �=0 the above equation reduces to Eq. �16�
with �=�1+�2. At physiological salt concentrations, �DH
�1 nm−1, so that �DH��1, assuming that � is not much
smaller than 1 nm. Assuming that �r�2�p, a simpler expres-
sion for free energy of viral capsids is obtained as follows:

FIG. 3. �Color online� �a� Free energies of the system �capsid +
salt� for c0=100 mM as a function of the capsid radius for several
different capsid charge densities as indicated in the body of the
figure. The symbols denote the numerically obtained �exact� results,
while the dashed lines are the DH approximations to the free energy
�the length of dashes increases with the capsid charge density�. �b�
Comparison of numerically exact results �symbols� with the DH
approximation �dashed line� for capsid radius R=20 nm.

FIG. 4. �Color online� An illustration of the electrostatic model
of the viral capsid. The figure represents the cross section of the
assembled empty viral capsid with parameters of the model de-
noted. Salt ions are represented by small spheres. The interior of the
capsid contains water and salt ions, but the salt ions are not present
in the viral capsid shell.
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lim
�DH��1,�r��p,�
R

FDH =
2	��1

2 + �2
2�R2

�0�r�DH
. �20�

Note that the above equation reduces to Eq. �16� when �1
=�2=� /2, but for any other combination of �1 and �2 such
that �1+�2=�, the free energy is larger. Interestingly
enough, the limiting form of the DH approximation for the
free energy in Eq. �20� does not depend on �p as long as
�p
�r �30�. Additionally, in this limit, the free energy does
not depend on signs of �1 and �2.

In any case, in the regime typical for viruses, we obtain
the R2 behavior of the free energy, as in model I. To check
the validity of the DH approximation for this model, and
whether the R2 dependence of the free energy is preserved in
the exact solution of the problem, we have again numerically
solved the full nonlinear Poisson-Boltzmann equation. The
results of these studies are displayed in Fig. 5, which repre-
sents the comparison of the DH and numerically exact solu-
tions for the electrostatic potential, and in Fig. 6 which dis-

plays the electrostatic energies of viral capsids.
It is obvious that the DH approximation may be entirely

inapplicable to obtain reliable estimates for viral energetics,
especially in the low to moderate salt regime. This is most
easily seen by comparing the potentials obtained numerically
and in the DH approximation in the low salt regime dis-
played in Fig. 5�b� �note the scale of the potential�. Note that
the R2 dependence of the free energy, predicted by the DH
approximation, is confirmed by the numerical results in the
limit appropriate for viral capsids. Intriguingly, inspection of
the data obtained by numerically solving the problem reveals
that the proportionality of free energy to square of the capsid
radius holds much better than predicted by the DH results,
especially in the low-salt regime, and even in regime where
�DHR�2, at least for the parameters chosen in the presented
results. This is similar to what was observed in model I. Note
that the magnitudes of free energy obtained in model II
for �1+�2=0.4 e /nm2 �2000–7000kBT at R=20 nm, c0

FIG. 5. �Color online� Electrostatic potentials obtained numeri-
cally �symbols� and in the Debye-Hückel approximation �lines�.
The arrows denote positions of the inner and outer side of the
capsid. The parameters of the calculation are �p=5, �=1 nm, and
R=20.15 nm. �a� �1=0.5 e /nm2, �2=−0.1 e /nm2, c0=100 mM. �b�
�1=0.6 e /nm2, �2=−0.2 e /nm2, c0=10 mM.

FIG. 6. �Color online� Electrostatic free energies of the system
�capsid + salt� obtained numerically �symbols� and in the Debye-
Hückel approximation �dashed lines� for three different combina-
tions of the inner and outer surface charge densities, �1 and �2 as
denoted in the figure. The parameters of the calculation are �p=5
and �=1 nm. �a� c0=100 mM. �b� c0=10 mM. Full thick lines rep-
resent functions that are proportional to R2. The electrostatic poten-
tials corresponding to points denoted by A and B are presented in
Figs. 5�a� and 5�b�, respectively.
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=100 mM, depending on �1 and �2� are comparable but al-
ways larger than those obtained in model I for �
=0.4 e /nm2 �
1800kBT at R=20 nm, c0=100 mM�, in
agreement with Eq. �20� and the discussion following it.

IV. APPLICATION OF THE RESULTS TO VIRUSES

A. R2 dependence of free energy and preferred mean curvature
of the capsid

In the regime of radii typical for the viral capsids
�R�10 nm�, the R��DH limit is clearly appropriate for the
physiological salt concentrations �c0�100 mM� and thus F
�R2. The total free energy, i.e., the sum of free energies in
Eqs. �8� and �13� is also proportional to R2, which means that
the free energy per protein is a constant. This is confirmed by
both of the models we considered. Since the effect related to
entropic differences between the �free� proteins in the solu-
tion and those assembled in capsids are expected to be sec-
ondary for �large� protein capsids �31�, the electrostatic in-
teractions in combination with the simple expression for the
adhesion free energy �Eq. �13�� cannot explain the occur-
rence of the preferred capsid radii. This is simply because
irrespective of the capsid size, i.e., its T number �see Eq. �1��,
the free energy per protein remains constant. Thus, there is
no particular capsid radius that is preferred energywise. This
is one of the main results of our study.

A preferred mean curvature of the capsid �H0�, which
could stem from the curvature of the protein-protein con-
tacts, would enforce a particular capsid radius—this would
mean that the �nonelectrostatic� “adhesion” energy in Eq.
�13� could be reformulated as

Fadhesion = −
Nm

2
�� + ��H0 −

1

R
�2� , �21�

at least when �H0−R−1 � 
1. Similar views have been re-
cently proposed �8,32�, but the original idea goes back to
Caspar and Klug �9�. Our results clearly support the idea of
the preferred curvature in viral capsids, a subject that has
recently received much attention �8,11,19,32�. If the attrac-
tive interaction has two or more minima in the spontaneous
curvature, arising from several stable protein-protein confor-
mations, one can also expect the formation of several differ-
ently sized capsids �4�. It should also be kept in mind that
allowed radii of the capsid are in fact discrete, since the
sphere can be triangulated by protein subunits only for a
certain total number of proteins �see Eq. �1��. The allowed
capsid radii are thus R=�15TA0 /	.

Several papers have recently questioned the problem of
pressure that acts within the self-assembled RNA virus
�17,33�. In this respect loosely packed RNA viruses are ex-
pected to be very different from the double stranded DNA
viruses whose capsids are known to withstand very high in-
ternal pressures �11,34,35�. It is important to note here that
the fact that the empty capsids precisely assemble at radii
given by R=H0

−1, which is the same as the radius of the
capsids filled with the viral genetic material �polyelectro-
lyte�, means that the pressure that acts on the capsid arises
solely from the polyelectrolyte self-interaction and its inter-

action with the capsid �33�. In other words, the repulsive
electrostatic self-interactions in empty capsids can be ex-
pected to be exactly counteracted by the angle-dependent
adhesive interactions in Eq. �21�—the first derivative of the
sum of these interactions with respect to capsid radius
�i.e., pressure� is zero.

B. Influence of electrostatic interactions on the strength of
protein-protein contacts

The capsid total free energy is negative only for suffi-
ciently low values of the capsid charge density, i.e., when

�2 �
2m�A0�0�r

�DH
, �22�

where A0 is the mean area of the protein subunit in the capsid
�this estimate is based on the model I; see Eq. �12��. This
shows that for sufficiently large �DH the repulsive electro-
static interaction dominates the energetics of the assembly. In
solutions of low salt concentrations the capsid assembly
should be thus inhibited. For sufficiently small values of
adhesion constant �, our calculations predict that there is a
critically low salt concentration, c0

cr at which the assembly
does not take place. Assuming that the critical salt concen-
tration is high enough so that the limit R /�DH�c0

cr��1 is
still satisfied, one obtains that c0

cr= �2	2�4R4kBT� /
��0�rN

2m2�2e2�.
Although the presented electrostatic models cannot ex-

plain the preferred radii of the empty viral capsid, they can
give some clue with regard to the recently observed strength-
ening of the protein-protein contacts in empty hepatitis B
capsids in high salt concentrations �3�. Namely, at high salt,
the repulsive protein-protein electrostatic interactions are
weakened as is clearly demonstrated in Fig. 2. Ceres and
Zlotnick observed that the contact energy ��, see Eq. �13��
between the capsid proteins of hepatitis B increases from
−5.3kBT at c0=150 mM to −6.9kBT at c0=700 mM �3�. The
total increase in energy of the capsid is thus 240�−6.9
+5.3�kBT=384kBT, since the capsid is made of 120 copies of
a tetravalent �m=4� protein dimer Cp1492 �3� �see Eq. �13��.
Our calculations based on model I predict that for �
=0.4 e /nm2, the capsid free energies at R=15.6 nm �which
is the mean radius of the hepatitis B capsid �36��, calculated
from Eq. �2� are 850kBT and 415kBT for c0=150 and
700 mM, respectively. The calculated increase in the binding
energy of a capsid is thus 435kBT in a surprisingly good
agreement with experimental results. Similar results are
obtained in model II using, e.g., �1=0.26 e /nm2, �2
=−0.13 e /nm2, �
1 nm, and �p=5 �compare Eqs. �20� and
�16��. Obviously, the quality of the agreement crucially de-
pends on the value of the surface charge density adopted,
since the free energy scales with the square of � �see Eq.
�15� and Fig. 3�b��. Assuming that �=0.7 e /nm2, as has been
estimated in Ref. �14� �see also the data estimated in Ref.
�37��, the increase in the binding energy is about 1220kBT,
more than three times larger from the experimental estimate.
Nevertheless, the order of magnitude agreement clearly sug-
gests that the observed increase in the “contact energy” be-
tween the protein subunits with the increase of salt concen-
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tration should be ascribed to screening of the repulsive
electrostatic protein-protein interactions rather than to some
salt-induced conformational change in the protein structure
as has been assumed in Ref. �3�. The same conclusion has
been found in Ref. �14�.

C. Electrostatics and the inside/outside asymmetry
of the viral capsids

Although the asymptotic behavior of energies in the DH
approximation �Eq. �20�� does not show the difference in
cases when the inner charge density becomes the outer and
vice versa, numerically exact results do show a slight differ-
ence in the regime appropriate for viral capsids, as illustrated
in Fig. 7. The free energies are smaller in the case when
larger charge density �in terms of absolute value� is on the
inner side of the capsid. Note, however, that the difference in
free energies in the two cases is less than about 100kBT per
capsid, at least for the parameters chosen for the calculations

displayed in Fig. 7. This translates in about kBT per protein
subunit, which is of the order of 10% of the total energy of
protein-protein contacts. Thus, the inside/outside
�top/bottom� asymmetry of the protein charge may have
some influence on the precision of the assembly so that the
proper sides of proteins face the capsid interior. Again, pre-
ferred curvature and steric constraints could be more impor-
tant reasons for the precision of viral assembly.

V. LIMITATIONS OF THE MODELS

Our models of an empty viral capsid are approximate and
limited in several aspects. First, we have assumed that the
surface charges are distributed uniformly on infinitely thin
spheres. This is of course an oversimplification of the true
distribution of protein charges in the capsid. Model II does
account for the essential characteristics of the capsid charge
distribution, but it still does not incorporate the possible po-
lar and azimuthal inhomogeneities of capsid charge. In that
respect, it is of interest to note that the R2 behavior of the
free energy obtained in model I for �DHR�1 is obtained, at
least on the level of the DH approximation, even when one
accounts for the charge inhomogeneities on the surface of the
sphere that have the icosahedral symmetry of the capsid �27�.

A second approximation in our models is the assumption
of perfect sphericity of the viral capsid. The elasticity model
of viral capsids by Lidmar et al. �19� suggests that larger
viruses are more facetted and that their asphericity is larger.
This is indeed a general trend that is observed in the experi-
mental studies of viruses �20�. However, the strict predic-
tions of the theory are based on its continuum limit �i.e.,
large T numbers�, which may not hold for small viruses.
Nevertheless, numerical experiments with a model capsid of
smaller T numbers �11,38�, performed as detailed in Refs.
�11,19�, do show that the asphericity in small viruses is again
governed by the interplay of bending and stretching energies
of the viral capsid and by the capsid radius. Elastic properties
of such small capsids that are very much different from the
corresponding properties of large viral capsids would be
needed to reproduce a significant asphericity in small vi-
ruses, knowing the asphericity of larger viruses where the
continuum limit of the theory is expected to work fine. Thus,
the assumption of small asphericity in capsids of small vi-
ruses is corroborated by the discrete version of the models
elaborated on in Refs. �11,19�. This, however does not ac-
count for the corrugation of the capsid surface that is ob-
served experimentally, especially in some viruses �e.g., bac-
teriophage P4; see Ref. �20��. This effect is related to the
spatial distribution of the protein mass and charge, and, as
elaborated on in the previous paragraph, is only partially
included in our model II.

VI. SUMMARY

In summary, we find that electrostatic interactions make
important �repulsive� contribution to the energetics empty
capsid binding of several hundreds of kBT, depending
strongly on the salt concentration. In highly salty solutions,
the electrostatic interactions are efficiently screened resulting

FIG. 7. �Color online� Dependence of capsid free energies when
the inner and outer charge densities interchange. Full lines denote
the free energies when �1=0.5 e /nm2 and �2=−0.1 e /nm2

��1=−0.1 e /nm2 and �2=0.5 e /nm2�. Dashed lines denote the free
energies when �1=0.6 e /nm2 and �2=−0.2 e /nm2

��1=−0.2 e /nm2 and �2=0.6 e /nm2�. In these calculations, �p=5,
�=1 nm, and c0=100 mM.
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in a larger binding energy of the capsids, in accordance with
what was experimentally found for the hepatitis B virus �3�.
The results of our exact numerical studies compare favorably
with limiting expressions derived previously in the Debye-
Hückel approximation and are valid for sufficiently large salt
concentrations �14�. The regimes in which these approxima-
tions severely fail have been identified. Since the electro-
static energies of viral capsids scale with the second power
of capsid radius, in the regime of radii typical for viruses, we
find that simple, curvature-independent expressions for the
adhesive, attractive interaction, such as Eq. �13�, cannot ex-
plain the monodispersity of self-assembled empty viral
capsids and that a certain angle-dependent interaction acting
between the neighboring protein subunits is needed in that
respect. Our study also explains that if the empty viral struc-
ture that is formed spontaneously has the same symmetry as
a fully infectious virus �containing the genetic material or
polyelectrolyte� then the pressure that acts on the viral capsid
arises from the polyelectrolyte self-interaction, and the at-
tractive interaction between the polyelectrolyte and the viral
capsid, i.e., the capsid electrostatic self-repulsion is exactly
counteracted by the curvature-dependent adhesion energy.
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APPENDIX: DETAILS OF THE SOLUTION OF MODEL II
IN THE DEBYE-HÜCKEL APPROXIMATION

The potential in the interior of the capsid can in the DH
approximation be written as

��r� = A
sinh��DHr�

r
, r � R . �A1�

In the capsid material, the potential is

��r� =
C

r
+ D, R � r � R + � , �A2�

and outside the capsid the potential is

��r� = B
exp�− �DHr�

r
, r � R + � . �A3�

Two equations for four unknown coefficients, A, B, C, and D
are obtained from the requirement of the continuity of poten-
tial at r=R and r=R+�. An additional two equations are
obtained by relating the discontinuity in the electric displace-
ment field to the surface charge density,

�0�r
 ��

�r



r−R=0−
− �0�p
 ��

�r



r−R=0+
= �1,

�0�p
 ��

�r



r−R−�=0−
− �0�r
 ��

�r



r−R−�=0+
= �2. �A4�

By solving the thus obtained equations, one obtains fairly
complicated expressions for the unknown coefficients, which
we simplify somewhat by introducing substitutions

A = A/�, B = B/�, C = C/�, D = D/�, �A5�

where

� = �0�r���p − �r��DH�2 + �p�DHR2

+ ��p�1 + 2�DHR� − �r�1 + �DHR��� + �DHR

���r�
2�DH + �pR + �r�1 + �DHR���coth��DHR�� ,

�A6�

and

A = ��r�1R2�DH�2 + �p��1R2 + �2�R + ��2�R

+ �r�1�1 + �DHR��R2�csch��DHR� , �A7�

B = ����p��1R2 + �2�R + ��2� − �r�2�R + ��2���

+ �p��1R2 + �2�R + ��2�R

+ �r�2�R + ��2��DHR coth��DHR�� � exp��DH�R + ��� ,

�A8�

C = �r��1�2�DHR2 + ��1R2 + �2�R + ��2�R

+ �1R2�1 + 2�DHR��

− �2�R + ��2�DH coth��DHR�� , �A9�

D = �p��1R2 + �2�R + ��2�

− �r��1R2 + �2�R + ��2 + �1R2�DH�R + ���

+ �r�DH�2�R + ��2R coth��DHR� . �A10�

When �=0, the potential reduces to that of a single shell of
charge with the effective surface charge density of �=�1
+�2 �in the DH approximation, see Eqs. �10� and �11��.
When �DHR�1, �
R, and �r
�p, which is a regime of
interest for viral capsids �denoted by subscript vir in the
equations below�, the following limiting forms for �, A, and
B coefficients apply:

lim
vir

� = �0�r��DHR2��r�DH� + 2�p�� , �A11�

lim
vir

A = R3���1 + �2��p + �1�r�DH��csch��DHR� ,

�A12�

lim
vir

B = R3���1 + �2��p + �2�r�DH��exp��DHR� .

�A13�

These three limiting forms are sufficient to derive Eq. �19�.
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